Frequency of female contacts made by different sex teachers during mathematics class

Sheila M. Zackavich
Rowan College of New Jersey

Follow this and additional works at: https://rdw.rowan.edu/etd
Part of the Elementary Education and Teaching Commons

Recommended Citation

Zackavich, Sheila M., "Frequency of female contacts made by different sex teachers during mathematics class" (1995). Theses and Dissertations. 2301.
https://rdw.rowan.edu/etd/2301

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact graduateresearch@rowan.edu.

FREQUENCY OF FHMALE CONTACTS MADE BY DIFFERENT SEX TEACEERS DURTNG MATHEMATICS class

by
Shaila M. Zackavich

A Theals
Submitted in partial fulfillment of the requirementa of the Master of Science in Teaching Degree
in the Graduate Division
of Rowan College
June 22, 1995

Approved by
MST AdFispr
Date Approved $]$ MnQ, hot, 1995

ABSTRACT

Sheila M. Zackarich, Fxequency of Female Contacts of Different sex Teachers in Mathematics class, Dr. Randall S. Robinson, Thesis Advisor, Masters of
 Science in Teaching
 June 22, 1995

Studies have shown that despite female students eager attempt to initiate contact in the mathematics classroom, teachers tend to respond to the males students more often than the femples.

This has been a questionable factor as to why females elect not to take four years of high school mathematics which exclude them from entering many high paying careers.

The purpose of this study was to observe a male and female teacher during their mathematics class and take frequency counts of all classroom contacts. This was to investigate if there was a gignificant diffetence between different sex teachers and their frequency of femaie contacts during their mathematics classes.

The results indicated parallel findings to previous research; the female students initiated more contacts during mathematics class, but the teachers initiated more of their contacts with the male students.

The chi square data analysis procedure was used to determine if a gigrificant difference existed between the two teachers
regerding their frequency of female contacts. The chi square value equalied 2.34 and was not significant at . 05 .

MINI-ABSTRACT

Sheile M. Zackavich, Frequency of Female Contacts of Different Sex Teachers im MBLhematics Class, Dr. Randall S. Robinson, Thesis Advisor, Masters of
Scionce in Teaching
June 22, 1995

This study was designed to observe two fifth grade elementary teachers, one male and one female, during their mathematics class. Frequency counts were bept for all contacts made during mathemathics class. By using the chi square data procepsing procedure it whs determined that there was not a significant djffererte between the different sex teachers and their mumer of female contarts. Both teachers initiated more contacta with their male students.

ACKNOWLEDGEMENTS

The writer is indebted to several people who played ar important role in the completion of this thesis.

I would like to thank God for giving me the eourage to leam and strive during this emotional and intellectual growth period in my life.

My appreciation is also extended to the Dean of Education, Dr. David Repel, Rown College of New Jersey, for sharing his experience, knowledge, and enthusiasm towards research. pe played a vital role in my motivation and confidence to complete and enjoy this project.

I would also like to thank the parental figures in my life, my mother and father, Mary Mullen-holt and Richard Zackavich, and my step-parents, Besha Zackavich and Ralph Holt, whose encouragement, heip, and prayers eased the burden during this stressful time.

This list woula not be complete without thanking two very good friende, Michele D'Amico and Elizabeth Donahme, who believed in me $^{\prime}$ and stuck by me when no one else did.

Lastly, I would like to dedicate this thesis to my son, Brian Thomas, who made a lot of sacrifices with me over the past fourteen months so we could have a better future.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii.
LIST OF TABLES iv
CHAPTER
I. SCOPE OF THE SIUDY 1
Introduction 1
statement of the Problem 2
Hypothesis 2
Definitions of Terms 3
Limitations 4
II. REVIEN OF THE LITERATURE 5
II工. DESIGN OF THE STUTY 13
Introduction. 13
Subjects of the Study 1.3
Ingtrument. 士3
IV. ANALYSIS OF FINDINGS 17
Introduction. 1.7
Tabulation of Frequency Percentages 17
Tabulation of Chi Square 19
Analysis of Data Related to Hypothesis 20
V. SUMMARY, CONCLUSIONS, AND RECOMIENDATIONS 21
Introduction 21
Summary of the Problem 21
Sumaney of the Typothesis 21
Summary of the Procedure 22
Suntady of the Findings. 22
Conclusion 23
Implications and Recommendations 23
REFERENCES 24
VITA 26

LIST OF TABLES

Table
Faye

1. Percent of Teacher-Afforded Response Opportunities............. 18
2. Percent of Teacher-Initiated Nonacademic Contacts................. Is
3. Percent of Studentt-Initiated Contacts. 19

Chapter I
SCOPE OF THE STUDY

Introduction

Although men and women have an equal ppodrtunity to take the same high school courses, mathematics courses continue to attract fewer women then mer. Becker (1981) reports that 53\% of white men and only 20 g of white women, which were first-year students at the Univeresity of Maryland, had at least four years of mathematics in high school. The figures for black men and women, were 22 名 and 10° respectively. This means that most women are reaching college unprepared to take the mathematics courses required for entrance into many of the higher-paying careexs (MacDonald, 1990).

Women have the same opportunities as men do to take as meny high school mathematics odurses as they want. Why do so many women choose not to? Researchers have studied pumerous extermal factors which could contribute to women choosing not to take mathematics courses including sociocultural factors (Fennema \& Sherman, 1977), gender-differentiated mep $\begin{gathered}\text { ages from parents (Jacobs, 1991), and }\end{gathered}$ birth order (Duffeyr i980). Very little research has been done to consider factors within the school enviroment which might contribute to the attrition rate of women in high sohool mathematics. Brophy Good (1970), using an instrument which colnted the frequency of contacts made between the teacher
and their students, was the first to find that teachers treat males and females differently. Females received less contact from the teacher and the most discouraging comments. Becker (1981) using the same instrument found Brophy $\&$ Good's results extended into the mathematics elasprooma.

Statement of the Problem

Teachers can portray a lot of messages to their students. They do this by how many contacts and what types of contacts (praise, criticism) they make towards a certain group of students during a perticular subject.

Many studies show the contact pattern made during mathematics class have led students to believe mathematies is "for males".

Thowgh studies focused on mathematics teechers are few, none have been found that compare the contact patterns of a male teacher during his mathematios dlass with the contact patterns of a female teacher during her mathematics class.

The purpose of this study was to compare a fifth grade male teacher to a fifth grade female teacher regarding their frequency of female student contacts in mathematics class.

Hypothesis

There will be a sigrificant difference between a fifth grade male teacher and a fifth grade female teacher regarding their frequency of female student contacts which occur during their mathematios class.

Definition of terims

Response opportunities - When a student publicly attempts to answer a question posed by the teacher,

Recitation - When a student reads aloud, describes some experience or object, or make some other extended oral presentation.

Procedural contacts - When the teacher-student interaction concerns permission, supplies, and equipment, or other procedural matters concerned with the student's individual needs or with classroom management.

Work-related contacts - When the teacher-student interaction concerns peat work, homework, ox other written work completed by the student.

Behavioral contacts - When the teacher disciplines the student or makes individual comments concerning his classroom behavior.

Observation - The dolleption of data indicating how often a teacher makes an interaction with a student in one of 12 categories.

Direct question - When a teacher dalls on a student by name to answer a question.

Open question - When the teacher asks a question, waits for students to raise their hands, then calls on a volunteer.

Call outs - When the teacher asks a question, a student calls out an answer, and the teacher directs his of her attention to that student.

Academic_contacts - A contact involving the academic content of the mathematios lesson.

Nonacademic contacts - A contact involving conversation, joking, praise, discipline, criticism, of procedure. Fublic contacte - A pontact made in front of other people. Private contacts - A contact involving a teacher and an individual student intended for only the two to hear.

Limitations

This study was conducted while the researcher was in the role of student teacher. One of the limitations of this study was that the subjects were not randomly selected. The researcher was limited to only one male classropm teacher within her practicum school, which therefore, determined the grade level and representative students for the study. The study took plape in an small aifluent school district. All of the students who participated in this study were white and came from intact families which included their birth parents. This. study is not representative to all fifth grade students and therefore the results cannot be generalized to the entire population.

Chapter II

Review of the Literature

Introduction

Many women are denying themselves opporturities to enter highpaying careers by choosing not to study mathematics in high school. Many women do not realize the life-long consequences of the adolescent decisions. Decades of studies have shown many factors relsted to women making this detrimentej decision during high school. These suudies have pointed out factors outside of and within the school environment. Becker (1981) in her quest for factors within the mathematics classroom, found a significent, difference in the way teachers treated males and females in their mathematics class. What is most surprising, is that, although females asked more questions (initiated more contacts), they received almost all the non-encolraging or discouraging comments. This could be a factor indicating a reason why a female might choose not to take further mathematics courges. The purpose of this study is to see if there is any difference in the way a male teacher and a femaie teacher treat females in their fifth grade mathematics class.

Mathematics and Women's Careers
It is a known truth that the income levels of American men and women are grossly unegual. This is because men and women hold very
different types of occupations. The higher paying professions of medicine, science, engineering, law, architecture, and business management in America are filled with male employees. Although more women are starting to enter these fields, they are still overwhelmingly flooding into lower paying occupations such as social work, nursing, and teaching (MecDonald, 1990).

A pamphlet entitled "The Math in High School You'll Need for College" prepared by the Mathematical Association of America list Architecture, Biology, Business Management, Chemistry, Computer Science, Economics, Engineering, Environmental Sciences, Mathematics, Optometry, Pharmacy, Pre-Medioine, and statistics as coliege majoss thet reguite four years of high school mathematics.

Studies have shown that women's lack of mathematics classes in high school limits their choice of college majors required to enter into thege high paying fields. The women and Math project conducted by the American Institutes for Research (AIR) in Palo Alto, Califomia found that high school mathematios was a vital factor in determining whether or not students entered certain kinds of occupations. The researchers concluded:

> Math skills Geveloped diring high school were both an essential component of subsequent education attainment and a significant predictor of success in establishing math-reiated careers independent of level of educational attainment. High schoot math achievement played a significant role in the development of mathwelated careers over the entire period from high school to age 29.

In 1973 Jucy sells identified mathematics as the "critical filter" that prevented many women from having access to higher paying and prestigious careprs. This triggered many investigations Focused on gender differences in mathematics achievement.

Gender Differences and Mathematics Achievement: Are Boys Biologically Better at Mathematios?

Globar conclusions tend to assert singly that males out perform females on mathematics tests (Hyde, Fennema, Lamon, 1990). In a recent article the question posed by teachers to researchers ad to why boys and girls sometimes score as high as boys on mathematics tests and sometimes they score considerably lower, Adele M. Brodkin, Phi. stated:

Experts had studied mathematical ability for many years before they began to understand why girls and women sometimes score as high ad boys and men, and other times they do not. Now we know that the content of test questions accounts for much of the difference. For example, math ability tests are often full of "male content" like baseball players' averages. When the same questions are asked in terms of recipes, girls do better.

Lynn Friedman (1989) analyzed the results of studies (a metaanalysis) that took place between 1974 and mid-1987 on sex differences in mathematical tasks. She found that the average sex difference is very mmall and that these differences are bepreasing over the years. She soncluded:

The sex difference in favor of males is decreasing over short periods of time. This is evidence for environmental explanations of sex differences, for surely it is not biology, but environmental influence that has been changing at the same time that sex differences have been decreasing.

Research also shows that in elementary grades males and females are equal, or in some instances, females outscore the boys, and that a gender gap does exist in high school. Marian Wozencraft (I963) in hex study of 50,000 third and sixth grade pupils found thet in both leveis the girls did better in arithmetic than the boys. Hilton and Berglund (1974) used longitudinal data to inve的igate gex differences in mathematios achievement. They found no difference in achievenent in fifth grade, but thereafter the boys pulled ahead. Jenet Shibley Hyde, Elizabeth Femema, and Susan J. Iamon (1990) performed a meta-analysis of 100 studies because they felt reviewers were consistently concluding that males perform better on mathematics tests than females. Their results from statistically combining the results from 100 previously done studies on the subject revealed that there were no gender differences in problem solving in elementary and midale school. Differences favoring men emerged in high school.

Although these reports show a gender gap in mathematics achievement at the high school level many researchers failed to account for the fact that girls take less mathematics in high school. Charlotte MacDonala (1990) stated that the diffarence in the twelfth grade scores of boys and girls to be explained by the difference in the amount of mathematics that the boys and girls had taken. Shemman and Fennema (1977) stated this point cleariy:

Since the time spent in mathematics classes clearly affects performance on both achievement and aptitude tests of mathematics; this factor must be considered seriously.

Environmental Reasons

Many girls may simply be unaware that mathematics is an important door-opener to many careers, Sherman and Fennema (1977) found that mathematics was perceived more useful by boys than by girls and that they woule benefit from an increased knowledge of the importance of mathematics as a tool and as an entry skill to many fields.

Many studies found that students, male and femele, see mathematics as a masculine subject (Stein and SmitheIns, 1969).

Statistics show that although even when girls do as well as boys on mathematic achievement tests they still have less confidence towards the subject (Bailey and Bailey, 1974).

Fenmema and shexmen (cited in Feeves 1992) have suggested the lack of math-related tasks outside of school that giris do negatively influence their achievement in mathematics,

Many studies have uncovered the fact that gender-stereatyped beliefs of parents contributed to girls lack of interest in high school mathematics (Jacklin, 1989, Fennema and Sheman, 1977, Jacobs, 1991).

Benbow and stanley investigated gender difierences in mathematical ability by checking the scores of a large population of bright boys and girls ptandardized tests in 1980, 1982, and 1963. In all three studies the boys scored higher than the girls. In the articles publishing these results they speculated about the biological causes of their findings, although they hed no
biological data. These articles caused a stir in academia and the popular press. When the popular press reported the results the speculations were exeggerated. Carol Jacklin (1989) researched the effects of the popular reports of the Benbow and stanley results. She compared the attitudes of parents who were aware of the Benbow and Staniey work as reported in the media, "misirnormed parents", with those of parents who had not heard about the work, "uninformed parents". She found thet the media campaign had a direct effect on children's mathematics course taking and achievement. She concludes:

Clearly, the effects were deleterious to girls. As mothers came to believe that mathembtics was much more difficult for girls than boys, their daughters became less likely to take additional math courses.

Many avenues have been explored outside the classroom to determine why females are choosing not to take mathematics courses in high school. Very few pieces of data are available to explain what is happening in the mathematics classroom that might contribute to the decline of women to achieve in and ultimately pursue higher mathematic opportunities. Fennema and sherman (1978) in their researah to find factors related to sex-rejated differences in mathematics, concluded that more research is needed to examine factore within a school milieu that might have an impact on the attrition rate of females in mathematics.

Reasons within the Classroom
Brophy and Good (1970) was the first to find that teachers
treat male and female students differently. Becker (1981), using the same instrument, extended Brophy and Goods research into the mathematics classroom. Becker observed 10 high school geometry classes with equal male-female student ratio. She found a significant difference in the way the teachers treated the different sex students. The teacher abked males more ghestions, and gave them more positive fepdback. Although the femalas asked more public questions, they received almost all the non-encouraging or discouraging comments. Becker concluded:

> Teachers have different expectations of students based on the sex of those students. feachers, as members of our society, come to a new class with expectations that olosely reflect those stereotypical views out society holds of the roles of men and women in mathematics, social behavior, and maturity. Then, techers treat students difterently on the basis of sex in ways consistent with those expectations. Lastly, students respond differently in olass in accordance with the expectations of teachers and society of their sex roles.

SUMMARY
The 3 iterature shows that there is a spectrum of factors females are faced with which contribute to them deciding not to take mathematics courses in high school. It also shows that these Females are leaving themselves out of the option to pursue many majors in college which lead to high paying caremrs.

Chapter III
DESIGN OE THE STUDY

Introduction

The study was conducted by the researcher with two fifth grade classes of different sexed teachers during the spring of 1995. Data was collected by frequency counts of student contact made during mathematics chass. Frequency counts were then put into percentaged and compared.

Subjects of the study
The subjects in this study consisted of two fifth grede teachers; one male and one female. Both teachers worked in the same elementary school. The elementary pchool was in a suburban public school distriet in southern New Jersey.

Each classroom composed of 28 students. Each class had 14 boys and 24 girls during each observation. The students were between $t 0$ and 12 years of age.

Thatrument

The Brophy-Good Feacher-Chila Irteyaction System was designed to study intexactions between teachers and students in classrooms. This instrument is very specific to record only interactions involving the teacher and an individual student; it leaves out aII other classroom behaviors. The Erophy-Good System was developed to
study contacts between teachers and individual students and investigate if teachers comunicate differential performance expectations to different children. It has been modified to use specifically in elementary school classrooms. to study sex differences.

Five different types of interaction situations are coded in the present system: response opportunities, recitation, procedural contacts, work-related contacts, and behavioral contacts. These five broad categories of teacher-child interaction are kept distinct from one another in goding, and each type has its ows place for coding on the coding sheets. In addition to this physical separation of the coding for the five types of contacts, coding distinctions are also made concerning the mature and sequence of the interaction observed. For every interaction, coders note whether the initiator was the teacher or the child and also code information concerning the teacher's message or response to the child during the interaction. In addition, the coding of response opportunities and recitation turns also includes information concerning the type of question asked and the guality OI the child's response, both of which are coded before coding the nature of the teacher's feedback. The latter coding also includes preservation of the sequential order of events, so that the chain of action and reaction sequences within these interactions is maintained.

The two teachers, one male and one female, were observed on
alternating days for four weeks for a total of ten observations each.

Quantitative, non-parametric nominal data was collected on coding sheets to represent all response opporturities, recitations, procedural pontacts, work-related contacts, 施d behavioral contacts which occurred during their mathematics class.

All of the data was then organized into the following 12 categories:

STUEET-TNITIATED CONTACTS BY SEX OF STUDENT
(A) Student questions
(B) Studentwinitiated individual academic contacts
(C) Student-initiated individual nonacademic contacts

TEACHER-AFFORDED RESPONSE OPPORTUNITIES
(A) Direct questions
(B) Open questions
(C) Call outs

TEACHER-INITIATED NONACADEMIC CONTACTS
(A) Conversation
(D) Praise
(B) Joking
(E) Criticism
(C) Discipline
(F) Procedure

A total was calculated in each category by adding up its frequency counts marked during the observations. Frequency counts were then changed into corresponding percenteges and displayed separately in three tables per teacher.

The pexcentages were then used to investigate ary significant

Gifference between the two teachers of different sex by using the chi Square data analysis procedure. The alpha level was .05.

Chapter IV
ANALYSIS OF FINDINGS
TRTRODUCTION
This study was conducted to observe two different fifth grade mathematics classes; one with a female teacher and one with a male teacher. Frequency counts were collected on data sheets during observations to keep track of all contacts made by both teachers and students. The corresponding percentages were tallied For 12 cetegories and organized into three tables for easy reference. Lastly, the chi square procedure was used to determine if a significant difference existed between the two teachers of different sex and their pccurrence of female student contacta.

TABILATION OF FREQUENCY PERCENTAGES
Frequency counts were taken in three areas: Teacher-aiforded response opportunities, teacher-initiated nonacademic contacte, and student-initiated contacts.

Table 1 illustrates the percent of teacher-afforded response opportunities of each teacher.
table 1
PERCENT OF TEACHER－AFFORDED RESPONSE OPPORTUNITIES

	female teacher		male teacher	
Category	F	M	F	M
Direct questions	44咅	56 咅	45\％	55\％
Open questions	448	56\％	43䃄	57\％
Call outs	31\％	69\％	34\％	66\％
Total	$40^{\text {¢ }}$	60\％	41吕	59\％
$F=$ contacts made M＝contacts made	male	ts		

In all three areas，direct questions，open questions，and call outs，both teachers directed their response opportunities towards the male students．Although both classes were 50% female，both teachers only made $40 \%-41 \%$ of their contects with theix female students．

Table 2 illustrates the percent of teacher－initiated nonacademic contacts made by each teacher．
table 2
PERCENT OF TEACRER－INITIATED NONACADEMIC CONTACTS

	Fema	cher	Male	her
Category	F	M	F	M
Conversation	298	718	31\％	69\％
Joking	26：	74 号	27\％	73\％
Pxajise	40%	60\％	37\％	63옿
Discipline	46\％	54\％	47\％	53尔
Criticism	50\％	50\％	49\％	53\％
Frocedure	498	51号	47\％	53\％
$F=$ contacts made with female students $M=$ eontacts made with male students				

Both teachers talked，joked，and praised their male students
more than theix female students, Also both teachers disciplined and went over procedures slightly more with the males than the females. Criticism was the only category that both teachers directed towards both the female and male students about equally. Table 3 illustrates the percent of student initiated contacts.
table 3
PERCEYT OF SIUDENT-INITIATGD CONTACTS

Category	female teacher	male teacher	
Student questions	55%	45%	53%
Stadenterinitiated academic contacts	59%	41%	47%
Student-initiated nonacademic contacts	58%	42%	61%
Grand total	57%	43%	63%

Females initiated all three kinds of contacts more often than the males in both classrooms. In the classroom with the female teacher the females students initiated 57 of the opntacts and in the classroom with the male teachex they initiated 59? of the contacts.

TABULATION OF GHI SOUARE

The one-dimensional chi square was used to determine if there was a significant difference regarding the number of female student contacts made by the female teacher and the male teacher during mathematics class.

The chi sçurre value equalled 2.34 and i戶 not significent at . 05.

ANALYSIS OF DATA RELATED TO HYPOTHESIS

It was hypothesized that there would be a significant difference between a fifth grade male teacher and a fifth grade female teacher regarding their frequency of female student contacts which occured during their mathematics class.

The data showed that both teachers made more oontacta, academically and nonacademically, with their male students.

The chi square data analysis procedure showed no significant difference between the contact patterns made towards their Eemale students during mathematics class; both teachers made more gontacts with maie students.

CHAPTER V
 SUMMARY, CONCLUSIONS, ZND RECOMMENDATIONS

INTRODUCTION

This study was conducted in an elementary school within southern New Jersey. Two fifth grade teachers, one male and one female, were observed during their mathematics clags. The researcher used the chi square data analysis procedure to determine if there existed a significant difference between the two teachers regarding their freçuency of female student contacts during mathematics class.

STMMARY OF THE PROBLEM
Nany studies have shown that teachers treat their male and female students differently. Within the mathematios classroom teacherg interacting more with their male students have led students to believe mathematics is "for males". Consequently, many females elect not to take four yeara of high achool mathematics which exclude them from entering many high-paying careers.

The purpose of this study was to see if both a male and female teacher interact less with their female students during mathematies class.

SDMMARY OF EYPOTEESIS

It was hypothesized that there would be a significant difference between a fifth grade male teacher and a fifth grade female teacher regarding their frequency of female student
sontacts which occur during their mathematics class.
s DMMARY OF PROCEDDRE
One male and one female fifth grade teacher were observed ten times each during their mathematics class. Frequency counts were marked on coding sheets to represent all response opportuoities, recitations, grocedural contacts, work-related contacts, and behavioral obntacts which occurred during observations. Frequency counts were then changed into corresponding percentages in 12 categories. The data was displayed in three tables separating teacher-afforded response opportunities, teachex-injtiated nonacademic contacts, and student-initiated contacts. Iastly, the percentages were then used to investigate if there was a significant difference between the two teachers of different sex by using the chi square data analysis procedure at level .05.

SUMMARY OF FINDINGS

In all. three teacher-afforded response opportunities talied, both teachers made $59-60 \%$ of their direct grestions, open questions, and call outs towards the male students.

The finding were also similar between the two teachers regarding teacher-initiated nonacademic contacts, Both teachers talked, joked, and prajsed their male students more than their female students. Eoth teachers diaciplined and went over procedures slightly more with males than the females, Criticism was the only category that both teachers directed towards both the male and female students about equally.

In all three student-initiated contacts tallied incIuding student guestions, academic contacts, and nonacademic contacts, female students initiated more contacts with their teachers that the male students.

The chi square data analysis procedure was used to determine if there was a significant diEference between the two teachers of different sex fegerding their freguency of femele student contacts Buring mathematics slass. The chi square value equalled 2.34 and is got significant at . 05.

CONCLUSION

Reviewing the data presented here, one must conclude that the results of this study support previous research; teachers make more contacta, academic and nonacademie, with their male stuclents. It was determined that there was not a significant difference regarding this and the sex of the teacher.

TMPLICATIONS AND RECOMMENDATTONS

The data in this study suggests that sex-biased interaction patterns do occur in fifth grade mathematics classes. Many of the implications suggested by previous research are then sustained. First, teachers have different expectations of students based on the sex of the student. Teachers, as members of our society, come to a new class with expectations that closely reflect those stereotypical views out society holds of the roles of men and women in mathematics. These differential expectations for each sex include ability in mathematics. Second, teachers then treat
students differently on the basis of sex in ways consistent with those expectations. The differential treatment found in this study could indirectly benefit male students, both in their learning of mathematics and their future course choices. Third, students will respond in clase accordance with the expectations of teachers and society of their sex roles (Becker, 1981).

Charlotte MacDonald (1990) recomends that teachers awareness is the key to decredebing and ultimately eliminating any sex-biased interactions within the mathematics classroom. She defines Mathematics Awareness the following way:

1. Noticing who is getting the most attention in mathematics class, the high achieving male student or the girl who needs h章lp?
2. Paying attention to the way mathematics is presented in classroom discussions, textbooks, and tests.
3. Consider ways of reducing "math anxiety" among students of both sex.
4. Examining your own attitudes about who "needs math" and which sex does better in it.

REFERENGES

Bailey, R.C. \& Bailey, K.E. (1974). Self-Perception of Scholastic Ability at Four Grade Levels, The Journal of Genetic Psychology,124_197-212.

Becker, J.R. (1981). Differential Tredtment of Females and Males in Mathematics classes. Thurnal for kesearch in Mathematics Education, 12,40-53.

Brophy, J.E. \& Good, T.I. (1970). Teacher's communication of differential expectations of children's classroom performance: Some behavioral data. Journal of Educational. Psychology, 61,365-374.

Duffey, B. (1980). Mathematics attitudes of primery students as a function of sex and birth order. Thesis. Rowen College of New Jersey, Savitz Library.

Fenneüa, E. \& Shermen, J. (1976). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American Educational Research Journal,14.51-71.

Fermema, E. \& Sherman, \quad. (1977). Sex-related differences in mathematios achievement and related factors: A further study. Journal for Research in Mathematics Education,9,189-203.

Friedman, L. (1989). Mathemetics and the gencer gap: A metaanalysis of recent studies on sex differences in mathematical tasks. Review of Educational Research, 59.185-213.

Hilton, T.L. \& Berglund, G.W. (1.974). Sex differenees in mathematics achievement- A longitudinal study, The Journal of Educational Beaperch, 67,231-235.

Hyde, J.S., Fennema, E. \& Lamon, S.J. (1990). Gender differences in mathematics periormance: A meta-analysis. psychological Bul1etin, 107,139-155.

Jacklin, C.N. (1999). Female and male: Issues of gender. American Psychologist,44.127-133.

Jacobs, J.E. (1991), Jnfluence of gender stereotypes on parent and child mathematics attitudes. Journel. of Educational Psycholocy. R1_518-527.

MadDonald, C. (1990). Mathematics and women's aareers. Palo Alto, CA. Found in EiRC.

Feeves, N.A. (1992). Gender, téhnology, and mathematise education: Working together to achieve "Equality". American Educational Research Association, San Francisco, CA. Found in EIRC.

Stein, A.H. \& Smithelis, J. (1969). Age and sex differences in cinildren's sex-role etanderds abott achievement. Develommental PBychology, 2,252-259.

Wozencraft, M. (1982). Are boys better than girls in Arjthmetic? The Arithmetic Teacher. 31, 125-727.

TNSTRUMENT USED:
Brophy, J.E. \& Good, T.L. Teacher-child dyadic interaction: A manval for aoding elassroom behavior. Austin, TX: The Researeh and Development Center For Teacher Education, 1969.
VITA

NAME:

DATE ANU PLAGE OF BIRTH:

ELEMENTARY SCHOOL:

FIGF SCHOOL:

COLIEGE:

GRADUATE:

SHEITA M. ZACKAVICH

AUGUST 31, 1968 SGRANTON, PENRSYLVANIA

ROGER B. CHAFFEY BERMMDA ISIANDS, U.K.

GLASSBORO HIGH SCHOOL ELASSBORO, NEW JERSEY

GLASSBORO STATE COLLEGE
(PRESENILY ROWAN COLIEGE OF NEW JEREEY)
GLASSBORO, NEW JERSEY
B.A. MATHEMATICS, 1992

ROWAN COLLEEE OF NEW JERSEY GIASSEORO, NEW JERSEY
M.S.T. ETMMENTARY FDUCATION 1995

